论文标题

基于增强的无监督域适应

Augmentation based unsupervised domain adaptation

论文作者

Orbes-Arteaga, Mauricio, Varsavsky, Thomas, Sorensen, Lauge, Nielsen, Mads, Pai, Akshay, Ourselin, Sebastien, Modat, Marc, Cardoso, M Jorge

论文摘要

在医学图像分析中,深度学习的插入导致在疾病分类等多种应用以及异常检测和分割中发展最新的策略。但是,即使是最先进的方法也需要大量和多样化的数据才能概括。因为在现实的临床情况下,数据采集和注释是昂贵的,经过小型和无代表性数据培训的深度学习模型,当部署在与用于培训的数据不同的数据中时(例如,来自不同扫描仪的数据)。在这项工作中,我们提出了一种域适应方法,以减轻分割模型中的此问题。我们的方法利用了对抗领域适应和一致性训练的特性,以实现更强大的适应性。使用两个具有白质超强度(WMH)注释的数据集,我们证明了所提出的方法即使在单个策略往往失败的角案例中也可以改善模型的概括。

The insertion of deep learning in medical image analysis had lead to the development of state-of-the art strategies in several applications such a disease classification, as well as abnormality detection and segmentation. However, even the most advanced methods require a huge and diverse amount of data to generalize. Because in realistic clinical scenarios, data acquisition and annotation is expensive, deep learning models trained on small and unrepresentative data tend to outperform when deployed in data that differs from the one used for training (e.g data from different scanners). In this work, we proposed a domain adaptation methodology to alleviate this problem in segmentation models. Our approach takes advantage of the properties of adversarial domain adaptation and consistency training to achieve more robust adaptation. Using two datasets with white matter hyperintensities (WMH) annotations, we demonstrated that the proposed method improves model generalization even in corner cases where individual strategies tend to fail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源