论文标题
在模拟剂中推断负担能力和主动电动机控制
Inference of Affordances and Active Motor Control in Simulated Agents
论文作者
论文摘要
灵活的目标指导行为是人类生活的基本方面。基于自由能最小化原理,主动推论理论从计算神经科学的角度正式产生了这种行为。基于该理论,我们介绍了一个输出型,时间预测的,模块化的人工神经网络体系结构,该建筑处理感觉运动信息,渗透到世界上与行为相关的方面,并引起高度灵活的,目标定向的行为。我们表明,我们的建筑经过端对端训练,以最大程度地减少自由能的近似值,它会发展出可以将其解释为负担得起图的潜在状态。也就是说,新兴的潜在状态表明哪种行动导致哪些影响取决于局部环境。结合主动推理,我们表明可以调用灵活的,目标指导的行为,并结合新兴的负担能力图。结果,我们的模拟代理会在连续的空间中灵活地转向,避免与障碍物发生碰撞,并且更喜欢高确定性地导致目标的途径。此外,我们表明,学识渊博的代理非常适合跨环境的零拍概括:在训练少数固定环境中的代理和其他影响其行为的地形的固定环境中,它在程序生成的环境中表现出色,其中包含不同位置的各种尺寸的障碍物和地形不同。
Flexible, goal-directed behavior is a fundamental aspect of human life. Based on the free energy minimization principle, the theory of active inference formalizes the generation of such behavior from a computational neuroscience perspective. Based on the theory, we introduce an output-probabilistic, temporally predictive, modular artificial neural network architecture, which processes sensorimotor information, infers behavior-relevant aspects of its world, and invokes highly flexible, goal-directed behavior. We show that our architecture, which is trained end-to-end to minimize an approximation of free energy, develops latent states that can be interpreted as affordance maps. That is, the emerging latent states signal which actions lead to which effects dependent on the local context. In combination with active inference, we show that flexible, goal-directed behavior can be invoked, incorporating the emerging affordance maps. As a result, our simulated agent flexibly steers through continuous spaces, avoids collisions with obstacles, and prefers pathways that lead to the goal with high certainty. Additionally, we show that the learned agent is highly suitable for zero-shot generalization across environments: After training the agent in a handful of fixed environments with obstacles and other terrains affecting its behavior, it performs similarly well in procedurally generated environments containing different amounts of obstacles and terrains of various sizes at different locations.