论文标题
前爆发算术的快速,简洁的人口协议
Fast and Succinct Population Protocols for Presburger Arithmetic
论文作者
论文摘要
在其在分布式计算中的2006年开创性论文中,Angluin等人。呈现一个结构,鉴于任何作为输入的前爆发谓词,它会输出决定谓词的无领导人群协议。大小$ m $的谓词的协议(当表示为阈值和剩余系数的布尔组合时,二进制中的系数)以$ \ Mathcal {o}(M \ cdot n^2 \ log n)$预期的交互作用数,在$ n $中几乎是最佳的。但是,协议的状态数在$ m $中为指数。 Blondin等。在Stacs 2020中描述了另一种结构,该结构产生了具有多项式状态数量但预期相互作用数量的协议。我们提出了一种结构,该结构以$ \ MATHCAL {o}(m)$状态生产协议,该状态以预期的$ \ MATHCAL {O}(M^{7} \ cdot n^2)$ noctootions(M^{7} \ cdot n^2)$ n $中的所有输入,对于所有尺寸$ω(m)$。为此,我们介绍了人口计算机,对人口协议的精心制作的概括更容易编程,并表明我们用于前灌注谓词的计算机可以转化为快速,简洁的人口协议。
In their 2006 seminal paper in Distributed Computing, Angluin et al. present a construction that, given any Presburger predicate as input, outputs a leaderless population protocol that decides the predicate. The protocol for a predicate of size $m$ (when expressed as a Boolean combination of threshold and remainder predicates with coefficients in binary) runs in $\mathcal{O}(m \cdot n^2 \log n)$ expected number of interactions, which is almost optimal in $n$. However, the number of states of the protocol is exponential in $m$. Blondin et al. described in STACS 2020 another construction that produces protocols with a polynomial number of states, but exponential expected number of interactions. We present a construction that produces protocols with $\mathcal{O}(m)$ states that run in expected $\mathcal{O}(m^{7} \cdot n^2)$ interactions, optimal in $n$, for all inputs of size $Ω(m)$. For this we introduce population computers, a carefully crafted generalization of population protocols easier to program, and show that our computers for Presburger predicates can be translated into fast and succinct population protocols.