论文标题

主动流控制机器学习方法的比较分析

Comparative analysis of machine learning methods for active flow control

论文作者

Pino, Fabio, Schena, Lorenzo, Rabault, Jean, Mendez, Miguel A.

论文摘要

诸如遗传编程(GP)和增强学习(RL)之类的机器学习框架在流量控制方面越来越受欢迎。这项工作对两者进行了比较分析,标明了其一些最具代表性的算法,以针对贝叶斯优化(BO)和Lipschitz全球优化(LIPO)等全球优化技术。首先,我们回顾了无模型控制问题的一般框架,将所有方法汇总为黑框优化问题。然后,我们在三个测试用例上测试控制算法。这些是(1)具有频率串扰的非线性动力学系统的稳定,(2)从汉堡的流量取消波浪和(3)圆柱尾流的阻力减小。我们提出了一个全面的比较,以说明它们在探索与剥削方面的差异及其在控制法定义中的“模型能力”之间的平衡与“必需的复杂性”之间的平衡。我们认为,这种比较为各种方法的杂交铺平了道路,我们为他们在流动控制问题的文献中提供了一些观点。

Machine learning frameworks such as Genetic Programming (GP) and Reinforcement Learning (RL) are gaining popularity in flow control. This work presents a comparative analysis of the two, bench-marking some of their most representative algorithms against global optimization techniques such as Bayesian Optimization (BO) and Lipschitz global optimization (LIPO). First, we review the general framework of the model-free control problem, bringing together all methods as black-box optimization problems. Then, we test the control algorithms on three test cases. These are (1) the stabilization of a nonlinear dynamical system featuring frequency cross-talk, (2) the wave cancellation from a Burgers' flow and (3) the drag reduction in a cylinder wake flow. We present a comprehensive comparison to illustrate their differences in exploration versus exploitation and their balance between `model capacity' in the control law definition versus `required complexity'. We believe that such a comparison paves the way toward the hybridization of the various methods, and we offer some perspective on their future development in the literature on flow control problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源