论文标题

高维设置中的分布反事实分析

Distributional Counterfactual Analysis in High-Dimensional Setup

论文作者

Masini, Ricardo

论文摘要

在治疗效果估计的背景下,本文提出了一种新方法,以恢复反事实分布时,当有一个(或几个)处理的单元,可能是在面板结构中观察到的高维电位控制。该方法可容纳该方法,尽管不需要,但单位数量大于时间段(高维设置)。与仅建模条件平均值相反,我们建议在不干预的情况下对整个条件分位数函数(CQF)进行建模,并使用L1占层化回归使用干预期对其进行估算。我们为估计的CQF得出了非反应性界限,在分位数上有效均匀地有效。从时间段,控制单元的数量,弱依赖系数(beta混合)和随机变量的尾巴衰变的时间段,界限是明确的。结果允许从业人员重新构建整个反事实分布。此外,我们约束了该估计的CQF的概率覆盖率,该估计的CQF可用于在每个干预后为(可能是随机)治疗效果构建有效的置信区间。我们还提出了一个新的假设检验,该假设检验基于估计的CQF偏离人群的LP规范,对无效的急剧无效。有趣的是,无效分布是准占用的,因为它仅取决于估计的CQF,LP规范和干预后的数量,但不取决于干预后的大小。因此,可以轻松模拟临界值。我们通过重新审查Acemoglu,Johnson,Kermani,Kwak和Mitton(2016)的实证研究来说明方法。

In the context of treatment effect estimation, this paper proposes a new methodology to recover the counterfactual distribution when there is a single (or a few) treated unit and possibly a high-dimensional number of potential controls observed in a panel structure. The methodology accommodates, albeit does not require, the number of units to be larger than the number of time periods (high-dimensional setup). As opposed to modeling only the conditional mean, we propose to model the entire conditional quantile function (CQF) without intervention and estimate it using the pre-intervention period by a l1-penalized regression. We derive non-asymptotic bounds for the estimated CQF valid uniformly over the quantiles. The bounds are explicit in terms of the number of time periods, the number of control units, the weak dependence coefficient (beta-mixing), and the tail decay of the random variables. The results allow practitioners to re-construct the entire counterfactual distribution. Moreover, we bound the probability coverage of this estimated CQF, which can be used to construct valid confidence intervals for the (possibly random) treatment effect for every post-intervention period. We also propose a new hypothesis test for the sharp null of no-effect based on the Lp norm of deviation of the estimated CQF to the population one. Interestingly, the null distribution is quasi-pivotal in the sense that it only depends on the estimated CQF, Lp norm, and the number of post-intervention periods, but not on the size of the post-intervention period. For that reason, critical values can then be easily simulated. We illustrate the methodology by revisiting the empirical study in Acemoglu, Johnson, Kermani, Kwak and Mitton (2016).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源