论文标题

稀有宝石:初始化时寻找彩票

Rare Gems: Finding Lottery Tickets at Initialization

论文作者

Sreenivasan, Kartik, Sohn, Jy-yong, Yang, Liu, Grinde, Matthew, Nagle, Alliot, Wang, Hongyi, Xing, Eric, Lee, Kangwook, Papailiopoulos, Dimitris

论文摘要

通过遵循耗时的“火车,修剪,重新训练”方法,可以将大型神经网络修剪成其原始大小的一小部分,而准确性几乎没有损失。 Frankle&Carbin的猜想是,我们可以通过训练“彩票”,即在初始化时发现的特殊稀疏子网络避免这种情况,可以将其训练以高准确性。但是,Frankle等人随后的工作。和Su等。提供了具体的证据,表明目前用于在初始化时找到可训练网络的算法,简单的基线比较,例如,反对训练随机稀疏子网。与简单的基线相比,寻找训练以提高准确性的彩票仍然是一个空旷的问题。在这项工作中,我们通过提出Gem-Miner来解决这个开放的问题,该产品在初始化时找到彩票,以击败当前的基线。 Gem-Miner发现彩票可以训练以准确性竞争力或比迭代级修剪(IMP)更好,并且更快的$ 19 \ times $。

Large neural networks can be pruned to a small fraction of their original size, with little loss in accuracy, by following a time-consuming "train, prune, re-train" approach. Frankle & Carbin conjecture that we can avoid this by training "lottery tickets", i.e., special sparse subnetworks found at initialization, that can be trained to high accuracy. However, a subsequent line of work by Frankle et al. and Su et al. presents concrete evidence that current algorithms for finding trainable networks at initialization, fail simple baseline comparisons, e.g., against training random sparse subnetworks. Finding lottery tickets that train to better accuracy compared to simple baselines remains an open problem. In this work, we resolve this open problem by proposing Gem-Miner which finds lottery tickets at initialization that beat current baselines. Gem-Miner finds lottery tickets trainable to accuracy competitive or better than Iterative Magnitude Pruning (IMP), and does so up to $19\times$ faster.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源