论文标题

伊比亚:贝叶斯通过逐步建筑物的贝叶斯推断在集团树上

IBIA: Bayesian Inference via Incremental Build-Infer-Approximate operations on Clique Trees

论文作者

Bathla, Shivani, Vasudevan, Vinita

论文摘要

贝叶斯网络中的精确推断非常棘手,并且对相应集团树(CT)中最大集团的大小具有指数依赖性,因此需要近似。基于因子的结合集团大小的方法比基于结构的方法更准确,但是昂贵,因为它们涉及大量候选结构或区域图中的信念的推断。我们提出了一种基于增量的建筑 - 及适应性(IBIA)范式的近似推理的替代方法,该方法将贝叶斯网络转换为包含一系列链接的群集树林(SLCTF)的数据结构,其中包含由用户指定值界定的集团尺寸。在此方法的增量构建阶段中,CTF是通过向CTF添加变量来逐步构建的,只要集团大小在指定的界限内。一旦达到集团尺寸约束,CTF中的CTS就会在ibia的推断阶段进行校准。所得的集团信念在近似阶段使用,以获得较小的集团大小的近似CTF。近似CTF构成了序列中下一个CTF的起点。重复这些步骤,直到将所有变量添加到序列中的CTF中。我们证明,用于汇总树的增量结构的算法始终会产生有效的CT,并且我们的近似技术保留了一个集团内变量的共同信念。基于此,我们表明SLCTF数据结构可用于有效地近似分区函数以及先验和后边缘。使用了500多个基准测试该方法,与其他竞争性运行时,结果显示出与其他近似方法相比,错误的误差显着降低。

Exact inference in Bayesian networks is intractable and has an exponential dependence on the size of the largest clique in the corresponding clique tree (CT), necessitating approximations. Factor based methods to bound clique sizes are more accurate than structure based methods, but expensive since they involve inference of beliefs in a large number of candidate structure or region graphs. We propose an alternative approach for approximate inference based on an incremental build-infer-approximate (IBIA) paradigm, which converts the Bayesian network into a data structure containing a sequence of linked clique tree forests (SLCTF), with clique sizes bounded by a user-specified value. In the incremental build stage of this approach, CTFs are constructed incrementally by adding variables to the CTFs as long as clique sizes are within the specified bound. Once the clique size constraint is reached, the CTs in the CTF are calibrated in the infer stage of IBIA. The resulting clique beliefs are used in the approximate phase to get an approximate CTF with reduced clique sizes. The approximate CTF forms the starting point for the next CTF in the sequence. These steps are repeated until all variables are added to a CTF in the sequence. We prove that our algorithm for incremental construction of clique trees always generates a valid CT and our approximation technique preserves the joint beliefs of the variables within a clique. Based on this, we show that the SLCTF data structure can be used for efficient approximate inference of partition function and prior and posterior marginals. More than 500 benchmarks were used to test the method and the results show a significant reduction in error when compared to other approximate methods, with competitive runtimes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源