论文标题

有限或无限地平线的有条件扩散过程具有吸收边界条件

Conditioned diffusion processes with an absorbing boundary condition for finite or infinite horizon

论文作者

Monthus, Cécile, Mazzolo, Alain

论文摘要

当无条件的过程是在半行$ x \ in] - \ infty上的扩散时,a [$在存在下吸收边界条件的位置$ x = a $时,我们构建了对应于有限或无限地平线的各种条件过程。当时间透射是有限的$ t <+\ infty $时,条件包括施加概率$ p^*(y,t)$在时间$ t $和位置$ y \ in] - \ infty,a [$,概率$γ^*(t_a)$上的位置$ y \ y y \ y y \ y y \ y y y time $ time $ t _a a [0 the] 0.当时间范围是无限的$ t =+\ infty $时,条件包括施加概率$γ^*(t_a)$在[0,+\ infty [$ insurative $ t_a \ in [$ t_a \ in [$ hypty [$ normorative $ normolorization $ [1- s^*(\ infty)] $确定条件的概率$ $ s^in [0](in [0)时,永远存在。因此,这种无限范围$ t =+\ infty $的案例可以被重新重新重新构建为扩散过程相对于其在位置$ a $的首次计时属性的条件。该通用框架应用于明确的情况,在该情况下,无条件的过程是带有均匀漂移$μ$的布朗运动,以生成满足各种类型的条件约束的随机轨迹。最后,我们描述了与2.5级的动态大偏差和随机控制理论的联系。

When the unconditioned process is a diffusion living on the half-line $x \in ]-\infty,a[$ in the presence of an absorbing boundary condition at position $x=a$, we construct various conditioned processes corresponding to finite or infinite horizon. When the time horizon is finite $T<+\infty$, the conditioning consists in imposing the probability $P^*(y,T ) $ to be surviving at time $T$ and at the position $y \in ]-\infty,a[$, as well as the probability $γ^*(T_a ) $ to have been absorbed at the previous time $T_a \in [0,T]$. When the time horizon is infinite $T=+\infty$, the conditioning consists in imposing the probability $γ^*(T_a ) $ to have been absorbed at the time $T_a \in [0,+\infty[$, whose normalization $[1- S^*(\infty )]$ determines the conditioned probability $S^*(\infty ) \in [0,1]$ of forever-survival. This case of infinite horizon $T=+\infty$ can be thus reformulated as the conditioning of diffusion processes with respect to their first-passage-time properties at position $a$. This general framework is applied to the explicit case where the unconditioned process is the Brownian motion with uniform drift $μ$ in order to generate stochastic trajectories satisfying various types of conditioning constraints. Finally, we describe the links with the dynamical large deviations at Level 2.5 and the stochastic control theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源