论文标题
通过在轻度限制其固定极点的情况下,通过合理功能对Lagrange插值过程的Lebesgue常数估算值
Estimates of Lebesgue Constants for Lagrange Interpolation Processes by Rational Functions under Mild Restrictions to their Fixed Poles
论文作者
论文摘要
我们通过一个或几个间隔,通过带有固定极点的理性函数来估算Lagrange插值过程的Lebesgue常数。我们承认,两极在间隔上具有积累点。 为了证明它,我们使用固定极点的合理函数使用逆多项式图像方法的类似物。
We estimate the Lebesgue constants for Lagrange interpolation processes on one or several intervals by rational functions with fixed poles. We admit that the poles have accumulation points on the intervals. To prove it we use an analog of the inverse polynomial image method for rational functions with fixed poles.