论文标题

在线笔迹短和长距离的空气轨迹的比较研究

A comparative study of in-air trajectories at short and long distances in online handwriting

论文作者

Alonso-Martinez, Carlos, Faundez-Zanuy, Marcos, Mekyska, Jiri

论文摘要

引言有关在线手写分析以支持病理学诊断的现有文献利用了空中轨迹。在生物识别安全应用程序中发生了类似的情况,该应用程序是使用其签名或笔迹识别或验证个人的目标。这些研究不考虑笔尖与写作表面的距离。这是由于当前采集设备没有提供高度形成的事实。但是,在两个不同高度上区分运动非常简单:a)短距离:高度低或等于数字化器表面上方1厘米,数字化器提供x和y坐标。 b)长距离:高度超过1厘米,唯一可用的信息是时间戳记,该时间戳记,指示特定行程在长距离上花费的时间。尽管在几篇论文中使用了短距离,但长距离已被忽略,并将在本文中进行研究。本文中的方法,我们将分析大量数据库(BioSecurid,emothaw,pahaw,氧气治疗和盐),其中包含总量的663位用户和17951个文件。我们已经专门研究了:a)对于不同的用户配置文件(病理和健康的用户)和不同的任务,在表面上花费的时间的百分比,距离距离远处的空中以及空中的百分比; b)这些信号可能使用这些信号来提高分类率。结果和结论我们的实验结果表明,长距离运动是总执行时间的很小一部分(签名为0.5%,BioSecur-ID的大写单词为10.4%,这是最大的数据库)。此外,在Pahaw数据库中字母L(p = 0.0157)和盐数据库中的Pentagons中字母L的病理与对照组的比较中发现了显着差异(P = 0.0122)

Introduction Existing literature about online handwriting analysis to support pathology diagnosis has taken advantage of in-air trajectories. A similar situation occurred in biometric security applications where the goal is to identify or verify an individual using his signature or handwriting. These studies do not consider the distance of the pen tip to the writing surface. This is due to the fact that current acquisition devices do not provide height formation. However, it is quite straightforward to differentiate movements at two different heights: a) short distance: height lower or equal to 1 cm above a surface of digitizer, the digitizer provides x and y coordinates. b) long distance: height exceeding 1 cm, the only information available is a time stamp that indicates the time that a specific stroke has spent at long distance. Although short distance has been used in several papers, long distances have been ignored and will be investigated in this paper. Methods In this paper, we will analyze a large set of databases (BIOSECURID, EMOTHAW, PaHaW, Oxygen-Therapy and SALT), which contain a total amount of 663 users and 17951 files. We have specifically studied: a) the percentage of time spent on-surface, in-air at short distance, and in-air at long distance for different user profiles (pathological and healthy users) and different tasks; b) The potential use of these signals to improve classification rates. Results and conclusions Our experimental results reveal that long-distance movements represent a very small portion of the total execution time (0.5 % in the case of signatures and 10.4% for uppercase words of BIOSECUR-ID, which is the largest database). In addition, significant differences have been found in the comparison of pathological versus control group for letter l in PaHaW database (p=0.0157) and crossed pentagons in SALT database (p=0.0122)

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源