论文标题
非排效机的存在$ \ mathbb {z} _2 $谐波1型通过$ \ mathbb {z} _3 $ symmetry
Existence of nondegenerate $\mathbb{Z}_2$ harmonic 1-forms via $\mathbb{Z}_3$ symmetry
论文作者
论文摘要
使用$ \ mathbb {z} _3 $对称性,我们为存在$ \ mathbb {z} _2 $谐波1型在riemannian歧管上提供了拓扑条件。作为推论,如果$ l $是$ s^3 $的定向链接,则具有确定性零的链接,则存在一个非排效机$ \ mathbb {z} _2 $谐波1型,比$ l $的3环状分支覆盖物。此外,我们发现了无限数量的合理同源性3个spheres,这些spheres允许一个非排定$ \ mathbb {z} _2 $谐波1形。
Using $\mathbb{Z}_3$ symmetry, we present a topological condition for the existence of the $\mathbb{Z}_2$ harmonic 1-forms over Riemannian manifold. As a corollary, if $L$ is an oriented link on $S^3$ with determinant zero, then there exists a nondegenerate $\mathbb{Z}_2$ harmonic 1-form over the 3-cyclic branched covering of $L$. Furthermore, we found infinite number of rational homology 3-spheres that admit a nondegenerate $\mathbb{Z}_2$ harmonic 1-form.