论文标题
Davydov-yetter共同体和相对同源代数
Davydov-Yetter cohomology and relative homological algebra
论文作者
论文摘要
Davydov - 元(DY)的同时学对张量函子和张量类别的单体结构的无限变形进行了分类。在本文中,我们为有限张量类别的DY共同体学计算提供了新的工具。关键是要实现Dy dy coomology作为相对延伸群体。特别是,我们证明了张量类别$ \ MATHCAL {C} $的无限变形由Drinfeld Center $ \ MathCal {Z}}(\ Mathcal {C})$ \ $ \ MathCal calcal {C} $ {C} $ {C} $ {c} $ {c} $的3-RD自扩展组进行了分类。从相对同源代数的经典结果中,我们获得了Dy同胞学的长序列和Yoneda产品,我们为其提供了明确的公式。使用长期的精确序列和二元性,我们仅基于相对投射的覆盖范围获得了同源代数的相对射击覆盖范围的尺寸公式。在$ \ Mathcal {z}(\ Mathcal {C})$的某个对象中计算不变的空间。多亏了Yoneda产品,我们还开发了一种明确计算Dy Cocycles的方法,这是变形理论中应用所需的。我们将这些工具应用于有限维的HOPF代数的有限维模块类别。我们详细研究了外部代数$λ\ Mathbb {c}^k \ rtimes \ Mathbb {c} [\ Mathbb {Z} _2] $,taft代数和$ \ Mathfrak的小量子组$ \ \ Mathfrak {
Davydov--Yetter (DY) cohomology classifies infinitesimal deformations of the monoidal structure of tensor functors and tensor categories. In this paper we provide new tools for the computation of the DY cohomology for finite tensor categories and exact functors between them. The key point is to realize DY cohomology as relative Ext groups. In particular, we prove that the infinitesimal deformations of a tensor category $\mathcal{C}$ are classified by the 3-rd self-extension group of the tensor unit of the Drinfeld center $\mathcal{Z}(\mathcal{C})$ relative to $\mathcal{C}$. From classical results on relative homological algebra we get a long exact sequence for DY cohomology and a Yoneda product for which we provide an explicit formula. Using the long exact sequence and duality, we obtain a dimension formula for the cohomology groups based solely on relatively projective covers which reduces a problem in homological algebra to a problem in representation theory, e.g. calculating the space of invariants in a certain object of $\mathcal{Z}(\mathcal{C})$. Thanks to the Yoneda product, we also develop a method for computing DY cocycles explicitly which are needed for applications in the deformation theory. We apply these tools to the category of finite-dimensional modules over a finite-dimensional Hopf algebra. We study in detail the examples of the bosonization of exterior algebras $Λ\mathbb{C}^k \rtimes \mathbb{C}[\mathbb{Z}_2]$, the Taft algebras and the small quantum group of $\mathfrak{sl}_2$ at a root of unity.