论文标题
湍流银河盘的演变:重力不稳定性,反馈和积聚
The evolution of turbulent galactic discs: gravitational instability, feedback and accretion
论文作者
论文摘要
我们使用分析“浴缸”模型研究了不同时期不同质量的恒星圆盘星系中湍流的驱动。假定气体和恒星的光盘处于边缘的现场不稳定性。假定湍流通过其耗散和三个同时的能源之间的能量平衡来维持。这些是恒星反馈,由于椎间盘不稳定性和通过流的块状积聚而导致的向内运输。运输速率以两种不同的形式主义计算,结果相似。为了达到能量平衡,圆盘会自我调节团块中的质量分数或湍流粘性扭矩参数。在此版本的模型中,流动能量转换为湍流的效率是一个自由参数,$ξ_a$。我们发现,这三种能源的贡献在同一球公园中,始终在所有光盘中均超过$ \ sim \!2 $。在光环中,$ \ leq 10^{12} \,\ msun $ by $ z = 0 $($ \ leq 10^{11.5} \,\ msun $ at $ z \!\ sim \!2 $),反馈是整个生命的主要驱动程序。在此质量上方,主要驱动程序分别是非常低或非常高的$ξ_a$的运输或积聚。对于假定的$ξ_a(t)$,随着时间的推移逐渐下降,带有HALOS的星系与当今的质量$> \!10^{12} $ M $ _ \ odot $从积聚过渡到InterMediate Redshifts的运输优势,$ Z \! \ sim \!3 $,当他们的质量为$ \ geq \!10^{11.5} \,\ msun $时。恒星形成速率与气体速度色散之间的预测关系与观察结果一致。
We study the driving of turbulence in star-froming disc galaxies of different masses at different epochs, using an analytic "bathtub" model. The disc of gas and stars is assumed to be in marginal Toomre instability. Turbulence is assumed to be sustained via an energy balance between its dissipation and three simultaneous energy sources. These are stellar feedback, inward transport due to disc instability and clumpy accretion via streams. The transport rate is computed with two different formalisms, with similar results. To achieve the energy balance, the disc self-regulates either the mass fraction in clumps or the turbulent viscous torque parameter. In this version of the model, the efficiency by which the stream kinetic energy is converted into turbulence is a free parameter, $ξ_a$. We find that the contributions of the three energy sources are in the same ball park, within a factor of $\sim\!2$ in all discs at all times. In haloes that evolve to a mass $\leq 10^{12}\,\Msun$ by $z=0$ ($\leq 10^{11.5}\,\Msun$ at $z\!\sim\!2$), feedback is the main driver throughout their lifetimes. Above this mass, the main driver is either transport or accretion for very low or very high values of $ξ_a$, respectively. For an assumed $ξ_a(t)$ that declines in time, galaxies in halos with present-day mass $>\!10^{12}$ M$_\odot$ make a transition from accretion to transport dominance at intermediate redshifts, $z\! \sim\!3$, when their mass was $\geq\!10^{11.5}\,\Msun$. The predicted relation between star-formation rate and gas velocity dispersion is consistent with observations.