论文标题

Twistlam:在动态环境中受到限制的猛击

TwistSLAM: Constrained SLAM in Dynamic Environment

论文作者

Gonzalez, Mathieu, Marchand, Eric, Kacete, Amine, Royan, Jérôme

论文摘要

经典的视觉同时定位和映射(SLAM)算法通常假设环境是刚性的。此假设限制了这些算法的适用性,因为它们无法准确估算包含移动物体的现实生活场景中的相机姿势和世界结构(例如汽车,自行车,行人等)。为了解决这个问题,我们提出了Twistlam:一种语义,动态和立体声猛击系统,可以跟踪环境中的动态对象。我们的算法根据其语义类创建积分群。得益于通过机械关节建模的集群间约束(语义类的功能)的定义,因此,一种新颖的约束束调整能够共同估计移动物体的姿势和速度以及古典世界结构和摄像机轨迹。我们对公共Kitti数据集的多个序列进行了评估,并定量证明它与最先进的方法相比改善了相机和对象跟踪。

Classical visual simultaneous localization and mapping (SLAM) algorithms usually assume the environment to be rigid. This assumption limits the applicability of those algorithms as they are unable to accurately estimate the camera poses and world structure in real life scenes containing moving objects (e.g. cars, bikes, pedestrians, etc.). To tackle this issue, we propose TwistSLAM: a semantic, dynamic and stereo SLAM system that can track dynamic objects in the environment. Our algorithm creates clusters of points according to their semantic class. Thanks to the definition of inter-cluster constraints modeled by mechanical joints (function of the semantic class), a novel constrained bundle adjustment is then able to jointly estimate both poses and velocities of moving objects along with the classical world structure and camera trajectory. We evaluate our approach on several sequences from the public KITTI dataset and demonstrate quantitatively that it improves camera and object tracking compared to state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源