论文标题
深入声明网络中利用问题结构:两个案例研究
Exploiting Problem Structure in Deep Declarative Networks: Two Case Studies
论文作者
论文摘要
深刻的声明网络和其他最新相关的工作已经显示了如何区分(连续)参数化优化问题的解决方案映射,从而将数学优化问题嵌入到端到端可学习模型中的可能性。这些不同的性能可以通过提供用于计算衍生物的表达式而无需展开向后pass期间前向通优化过程的步骤而导致大量内存节省的。但是,结果通常需要倒置一个大的黑森矩阵,该矩阵天真地实施时的计算昂贵。在这项工作中,我们研究了深度声明网络的两个应用 - 强大的向量汇总和最佳传输 - 并显示如何利用问题结构以在时间和内存方面获得非常有效的后退计算。我们的想法可以用作改善其他新型深度宣言节点的计算性能的指南。
Deep declarative networks and other recent related works have shown how to differentiate the solution map of a (continuous) parametrized optimization problem, opening up the possibility of embedding mathematical optimization problems into end-to-end learnable models. These differentiability results can lead to significant memory savings by providing an expression for computing the derivative without needing to unroll the steps of the forward-pass optimization procedure during the backward pass. However, the results typically require inverting a large Hessian matrix, which is computationally expensive when implemented naively. In this work we study two applications of deep declarative networks -- robust vector pooling and optimal transport -- and show how problem structure can be exploited to obtain very efficient backward pass computations in terms of both time and memory. Our ideas can be used as a guide for improving the computational performance of other novel deep declarative nodes.