论文标题
完全相关噪声的量子误差校正方案
Quantum Error Correction Scheme for Fully Correlated Noise
论文作者
论文摘要
本文研究了$ n $ qubit系统上完全相关的噪声通道的量子错误校正方案,其中错误操作员以$ w^{\ otimes n} $为单位,其中$ w $是任意$ 2 \ times times times二$ 2 $单位运算符。在以前的文献中,可以使用递归量子错误校正方案使用$(K+1)$ - Qubit Ancilla保护$ K $ QUBITS。我们使用IBM量子计算机在3 Quit和5Qubit通道上实现了此方案,在该方案中,我们在以前的论文中发现了与编码/解码操作员分解为基本量子门有关的错误。 在这里,我们提出了一个修改的编码/解码操作员,该操作员可以有效地分解为\ texttt {qiskit}库中可用的(a)标准门,(b)由单粒门和cnot门组成的基本门。由于IBM量子计算机的性能相对较少,因此更有效的分解可提供更准确的结果。我们的实验强调了有效分解对编码/解码操作员的重要性,并证明了我们提出的方案在纠正量子误差方面的有效性。 此外,我们探索了一种特殊类型的通道类型,具有$σ_x^{\ otimes n}的错误操作员,σ_y^{\ otimes n} $和$σ_z^{\ otimes n} $,其中$σ_x,$σ_x,σ_y,σ_z$是Pauli Matrices。对于这些通道,我们实施了一种混合量子误差校正方案,该方案使用IBM的量子计算机保护量子和经典信息。我们对$ n = 3、4、5 $进行实验,与最近的工作相比显示出显着改善。
This paper investigates quantum error correction schemes for fully-correlated noise channels on an $n$-qubit system, where error operators take the form $W^{\otimes n}$, with $W$ being an arbitrary $2\times 2$ unitary operator. In previous literature, a recursive quantum error correction scheme can be used to protect $k$ qubits using $(k+1)$-qubit ancilla. We implement this scheme on 3-qubit and 5-qubit channels using the IBM quantum computers, where we uncover an error in the previous paper related to the decomposition of the encoding/decoding operator into elementary quantum gates. Here, we present a modified encoding/decoding operator that can be efficiently decomposed into (a) standard gates available in the \texttt{qiskit} library and (b) basic gates comprised of single-qubit gates and CNOT gates. Since IBM quantum computers perform relatively better with fewer basic gates, a more efficient decomposition gives more accurate results. Our experiments highlight the importance of an efficient decomposition for the encoding/decoding operators and demonstrate the effectiveness of our proposed schemes in correcting quantum errors. Furthermore, we explore a special type of channel with error operators of the form $σ_x^{\otimes n}, σ_y^{\otimes n}$ and $σ_z^{\otimes n}$, where $σ_x, σ_y, σ_z$ are the Pauli matrices. For these channels, we implement a hybrid quantum error correction scheme that protects both quantum and classical information using IBM's quantum computers. We conduct experiments for $n = 3, 4, 5$ and show significant improvements compared to recent work.