论文标题

冲击前解决方案的全球适应性为燃烧的一维活塞问题Euler流量

Global well-posedness of shock front solutions to one-dimensional piston problem for combustion Euler flows

论文作者

Hu, Kai, Kuang, Jie

论文摘要

本文专门研究了可压缩{燃烧}欧拉(Euler)流动的活塞问题理论。只要引导冲击被压缩并点燃反应物,就会发生一种称为爆炸的现象。从数学上讲,该问题可以作为双曲线平衡定律的初始有限价值问题,其较大的冲击锋作为自由边界。在目前的论文中,我们在$ bv \ cap l^1 $空间的框架内通过波前跟踪方案建立了熵解决方案的全球范围良好。这里的主要困难源于不连续的源项,没有均匀耗散结构,以及与退化特征场相关的特征界限。在处理由点火温度引起的障碍物时,我们开发了一种修饰的GLIMM型功能来控制燃烧波的振荡生长,即使放热源无法均匀衰减。至于特征边界,接触性不连续性的退化完全采用了在活塞边界附近获得优雅的稳定性估计。同时,我们设计了一个加权的Lyapunov功能,以平衡由大电击,特征边界和放热反应产生的非线性效应,然后获得燃烧波溶液的$ L^1- $稳定性。我们的结果表明,在$ bv $ sense中,在小扰动下,在$ bv $ sense中,一个维度\ emph {znd}爆炸波{supported}确实是非线性稳定的。这是第一项关于无粘性反应的欧拉液的良好性,以点火温度为主的作品。

This paper is devoted to the well-posedness theory of piston problem for compressible {combustion} Euler flows with physical ignition condition. A significant combustion phenomena called detonation will occur provided the reactant is compressed and ignited by a leading shock. Mathematically, the problem can be formulated as an initial-boundary value problem for hyperbolic balance laws with a large shock front as free boundary. In present paper, we establish the global well-posedness of entropy solutions via wave front tracking scheme within the framework of $BV\cap L^1$ space. The main difficulties here stem from the discontinuous source term without uniform dissipation structure, and from the characteristic-boundary associated with degenerate characteristic field. In dealing with the obstacles caused by ignition temperature, we develop a modified Glimm-type functional to control the oscillation growth of combustion waves, even if the exothermic source fails to uniformly decay. As to the characteristic boundary, the degeneracy of contact discontinuity is fully employed to get elegant stability estimates near the piston boundary. Meanwhile, we devise a weighted Lyapunov functional to balance the nonlinear effects arising from large shock, characteristic boundary and exothermic reaction, then obtain the $L^1-$stability of combustion wave solutions. Our results reveal that one dimensional \emph{ZND} detonation waves {supported} by a forward piston are indeed nonlinearly stable under small perturbation in $BV$ sense. This is the first work on well-posedness of inviscid reacting Euler fluids dominated by ignition temperature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源