论文标题

稳健曲线对象分割的局部强度顺序转换

Local Intensity Order Transformation for Robust Curvilinear Object Segmentation

论文作者

Shi, Tianyi, Boutry, Nicolas, Xu, Yongchao, Géraud, Thierry

论文摘要

在许多应用中,对曲线结构的分割很重要,例如用于早期检测血管疾病的视网膜血管分割和路面裂纹分割,用于道路状况评估和维持。当前,基于深度学习的方法在这些任务上取得了令人印象深刻的表现。然而,他们中的大多数主要集中于寻找强大的深度体系结构,但忽略捕获固有的曲线结构特征(例如,曲线结构比上下文更暗)以获得更强大的表示。因此,表演通常会在交叉数据库上大量下降,这在实践中带来了巨大的挑战。在本文中,我们旨在通过引入新型的局部强度顺序转化(LIOT)来提高普遍性。具体而言,我们根据每个像素及其附近像素之间的强度顺序以及四个(水平和垂直)方向,将灰度图像转移到对比度不变的四通道图像中。这导致表示曲线结构的固有特征的表示,同时具有鲁棒性的对比度变化。对三个视网膜血管分割数据集进行的跨数据库评估表明,LIOT可提高某些最新方法的普遍性。此外,视网膜血管分割和路面裂纹分割之间的跨数据库评估表明,LIOT能够保留具有较大外观间隙的曲线结构的固有特征。该方法的实现可在https://github.com/ty-shi/liot上获得。

Segmentation of curvilinear structures is important in many applications, such as retinal blood vessel segmentation for early detection of vessel diseases and pavement crack segmentation for road condition evaluation and maintenance. Currently, deep learning-based methods have achieved impressive performance on these tasks. Yet, most of them mainly focus on finding powerful deep architectures but ignore capturing the inherent curvilinear structure feature (e.g., the curvilinear structure is darker than the context) for a more robust representation. In consequence, the performance usually drops a lot on cross-datasets, which poses great challenges in practice. In this paper, we aim to improve the generalizability by introducing a novel local intensity order transformation (LIOT). Specifically, we transfer a gray-scale image into a contrast-invariant four-channel image based on the intensity order between each pixel and its nearby pixels along with the four (horizontal and vertical) directions. This results in a representation that preserves the inherent characteristic of the curvilinear structure while being robust to contrast changes. Cross-dataset evaluation on three retinal blood vessel segmentation datasets demonstrates that LIOT improves the generalizability of some state-of-the-art methods. Additionally, the cross-dataset evaluation between retinal blood vessel segmentation and pavement crack segmentation shows that LIOT is able to preserve the inherent characteristic of curvilinear structure with large appearance gaps. An implementation of the proposed method is available at https://github.com/TY-Shi/LIOT.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源