论文标题
验证标记的状态过渡和消息生产系统:建模有缺陷分布式系统的理论
Validating Labelled State Transition and Message Production Systems: A Theory for Modelling Faulty Distributed Systems
论文作者
论文摘要
对具有故障的分布式系统进行建模和正式推理是一项具有挑战性的任务。为了解决这个问题,我们提出了验证标记的状态过渡和消息生产系统(VLSM)的理论。 VLSM的理论提供了一种通用方法来描述和验证分布式协议的属性,该协议的执行受到故障的约束,并支持正确的构造系统开发方法。我们调查的主要重点是模棱两可,这是一种错误的行为模式,我们正式建模,理性,然后展示如何从耐用的证据中检测到可能在本地可用于系统组件的持久证据。等效组件表现出与单个跟踪系统执行不一致的行为,同时也仅通过发送和接收有效的消息与其他组件进行交互。如果系统的有效性约束验证其接收到的消息是由系统生产的,则系统的组件称为该系统的验证器。我们的主要结果表明,对于验证器系统,拜占庭组件可以对诚实验证器产生的影响与等效组件可以对非等级验证器产生的效果完全相同。因此,对于潜在有缺陷验证器的分布式系统,用等效组件代替拜占庭组件没有物质分析后果,并构成了拜占庭容错分析的声音替代基础的基础。本文中的所有结果和示例均已正式化并在COQ证明助手中进行了检查。
Modeling and formally reasoning about distributed systems with faults is a challenging task. To address this problem, we propose the theory of Validating Labeled State transition and Message production systems (VLSMs). The theory of VLSMs provides a general approach to describing and verifying properties of distributed protocols whose executions are subject to faults, supporting a correct-by-construction system development methodology. The central focus of our investigation is equivocation, a mode of faulty behavior that we formally model, reason about, and then show how to detect from durable evidence that may be available locally to system components. Equivocating components exhibit behavior that is inconsistent with single-trace system executions, while also only interacting with other components by sending and receiving valid messages. Components of system are called validators for that system if their validity constraints validate that the messages they receive are producible by the system. Our main result shows that for systems of validators, the effect that Byzantine components can have on honest validators is precisely identical to the effect that equivocating components can have on non-equivocating validators. Therefore, for distributed systems of potentially faulty validators, replacing Byzantine components with equivocating components has no material analytical consequences, and forms the basis of a sound alternative foundation to Byzantine fault tolerance analysis. All of the results and examples in the paper have been formalised and checked in the Coq proof assistant.