论文标题

驱动的保形场理论中的超级订购相关器

Out-of-Time-Order correlators in driven conformal field theories

论文作者

Das, Suchetan, Ezhuthachan, Bobby, Kundu, Arnab, Porey, Somnath, Roy, Baishali, Sengupta, K.

论文摘要

我们计算遭受连续或离散周期性驱动器协议的共形场理论(CFTS)的超级相关器(OTOC)。这是通过对频道镜面时间进行适当的分析延续来实现的。在详细介绍了一般结构之后,我们在大的$ c $ cfts中执行明确的计算,我们发现OTOCS在加热阶段,非加热阶段和相位边界上分别显示指数,振荡和幂律行为。与此相反,对于代表一个可集成模型的ISING CFT,OTOCS永远不会显示出这种指数增长。这种观察暗示了OTOC如何在经过周期性驱动的可集成和混乱的CFT模型之间划分。我们进一步探索了以相应的蝴蝶速度和Lyapunov指数为特征的轻锥的性质。有趣的是,由于驱动器引入的空间不均匀性,在这些系统中,蝴蝶速度对操作员的初始位置具有明确的依赖。我们列出了Lyapunov指数及其对这两种协议驱动器频率和振幅的依赖性,并讨论了将此类驱动的CFT与其未驱动的对应物区分开的固定点结构。

We compute Out-of-Time-Order correlators (OTOCs) for conformal field theories (CFTs) subjected to either continuous or discrete periodic drive protocols. This is achieved by an appropriate analytic continuation of the stroboscopic time. After detailing the general structure, we perform explicit calculations in large-$c$ CFTs where we find that OTOCs display an exponential, an oscillatory and a power-law behaviour in the heating phase, the non-heating phase and on the phase boundary, respectively. In contrast to this, for the Ising CFT representing an integrable model, OTOCs never display such exponential growth. This observation hints towards how OTOCs can demarcate between integrable and chaotic CFT models subjected to a periodic drive. We further explore properties of the light-cone which is characterized by the corresponding butterfly velocity as well as the Lyapunov exponent. Interestingly, as a consequence of the spatial inhomogeneity introduced by the drive, the butterfly velocity, in these systems, has an explicit dependence on the initial location of the operators. We chart out the dependence of the Lyapunov exponent and the butterfly velocities on the frequency and amplitude of the drive for both protocols and discuss the fixed point structure which differentiates such driven CFTs from their un-driven counterparts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源