论文标题
远程分散 - 包括机器学习潜力,用于结构搜索和优化混合有机无机界面
Long-range dispersion-inclusive machine learning potentials for structure search and optimization of hybrid organic-inorganic interfaces
论文作者
论文摘要
杂化有机无机界面的结构和稳定性的计算预测为电子薄膜设备,涂料和催化剂表面的可测量特性提供了重要的见解,并在其理性设计中起着重要作用。但是,分子构型的丰富多样性以及远程相互作用在此类系统中的重要作用使得很难使用机器学习(ML)潜力来促进结构探索,否则这些探索否则需要计算昂贵的电子结构计算。我们提出了一种ML方法,该方法可以通过结合对高级电子结构数据训练的两种不同类型的深神经网络来实现快速而准确的结构优化。第一个模型是经过局部能量和力训练的短态的原子间ML电势,而第二个是有效原子体积的ML模型,该模型是从原子中分配的原子。后者可用于将短距离电位连接到建立的密度依赖性远程色散校正方法。对于两个系统,特别是钻石(110)表面上的金纳米群和有机$π$ - 偶联的分子(111)表面,我们从密度功能理论的稀疏结构松弛数据上培训模型,并显示模型的能力,可以提供高效的结构优化和半Qualitigation Qualitive Energialative for Adsorption Adsorption Adsorption aDSorptive todsorptions的能力。
The computational prediction of the structure and stability of hybrid organic-inorganic interfaces provides important insights into the measurable properties of electronic thin film devices, coatings, and catalyst surfaces and plays an important role in their rational design. However, the rich diversity of molecular configurations and the important role of long-range interactions in such systems make it difficult to use machine learning (ML) potentials to facilitate structure exploration that otherwise require computationally expensive electronic structure calculations. We present an ML approach that enables fast, yet accurate, structure optimizations by combining two different types of deep neural networks trained on high-level electronic structure data. The first model is a short-ranged interatomic ML potential trained on local energies and forces, while the second is an ML model of effective atomic volumes derived from atoms-in-molecules partitioning. The latter can be used to connect short-range potentials to well-established density-dependent long-range dispersion correction methods. For two systems, specifically gold nanoclusters on diamond (110) surfaces and organic $π$-conjugated molecules on silver (111) surfaces, we train models on sparse structure relaxation data from density functional theory and show the ability of the models to deliver highly efficient structure optimizations and semi-quantitative energy predictions of adsorption structures.