论文标题

一种用于社交网络传播概率的新的蝙蝠和Pagerank算法

A New BAT and PageRank algorithm for Propagation Probability in Social Networks

论文作者

Yeh, WC, Huang, CL, Hsu, TY, Liu, Z, Tan, SY

论文摘要

社交网络在现代变得越来越重要和受欢迎。此外,社交网络的影响在包括政府组织,学术研究或公司组织在内的各种组织中起着至关重要的作用。因此,如何在社交网络中制定最佳传播策略也变得越来越重要。通过提高评估社交网络的传播概率的精度,它可以间接影响成本,人力和信息传播时间的投资以获得最佳回报。这项研究提出了一种新的算法,其中包括一个无标度网络,Barabasi-Albert模型,二进制 - 附加树(BAT)算法,Pagerank算法,Pagerank算法和个性化的Pagerank算法和新的BAT算法,以计算社交网络中的传播概率。实施社交网络模型的仿真实验后获得的结果显示了研究的模型,所提出的算法为提高社交网络中信息传播的效率提供了有效的方法。这样,最低投资就可以实现最大的传播效率。

Social networks have increasingly become important and popular in modern times. Moreover, the influence of social networks plays a vital role in various organizations including government organizations, academic research or corporate organizations. Therefore, how to strategize the optimal propagation strategy in social networks has also become more important. By increasing the precision of evaluating the propagation probability of social network, it can indirectly influence the investment of cost, manpower and time for information propagation to achieve the best return. This study proposes a new algorithm, which includes a scale-free network, Barabasi-Albert model, Binary-Addition-Tree (BAT) algorithm, PageRank algorithm, personalized PageRank algorithm and a new BAT algorithm, to calculate the propagation probability in social networks. The results obtained after implementing the simulation experiment of social network models show the studied model and the proposed algorithm provide an effective method to increase the efficiency of information propagation in social networks. In this way, the maximum propagation efficiency is achieved with the minimum investment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源