论文标题
RONELDV2:更快,改进的车道跟踪方法
RONELDv2: A faster, improved lane tracking method
论文作者
论文摘要
车道检测是自动驾驶汽车和车道出发警告系统中控制系统不可或缺的一部分,因为车道是公路车辆操作环境的关键组成部分。在上一篇论文中,提出了稳健的神经网络输出增强活性车道检测(Roneld)方法,增强了深度学习车道检测模型,以改善主动或自我的车道准确性性能。本文通过进一步研究用于提高该方法的稳健性和不同车道尺寸(例如车道标记厚度)的车道跟踪方法,扩展了工作,并提出了改进的,更轻的重量车道检测方法RoneldV2。它通过检测车道点方差,合并车道以找到更准确的车道参数以及使用指数移动平均方法来计算更健壮的车道权重来改善先前的Roneld方法。使用提出改进的实验表明,在不同数据集和深度学习模型中,车道检测准确性结果持续提高,以及通过运行时最多降低两倍的计算复杂性下降,这增强了其对自动驾驶汽车和车道出发警告系统的实时使用的适用性。
Lane detection is an integral part of control systems in autonomous vehicles and lane departure warning systems as lanes are a key component of the operating environment for road vehicles. In a previous paper, a robust neural network output enhancement for active lane detection (RONELD) method augmenting deep learning lane detection models to improve active, or ego, lane accuracy performance was presented. This paper extends the work by further investigating the lane tracking methods used to increase robustness of the method to lane changes and different lane dimensions (e.g. lane marking thickness) and proposes an improved, lighter weight lane detection method, RONELDv2. It improves on the previous RONELD method by detecting the lane point variance, merging lanes to find a more accurate set of lane parameters, and using an exponential moving average method to calculate more robust lane weights. Experiments using the proposed improvements show a consistent increase in lane detection accuracy results across different datasets and deep learning models, as well as a decrease in computational complexity observed via an up to two-fold decrease in runtime, which enhances its suitability for real-time use on autonomous vehicles and lane departure warning systems.