论文标题

基于域知识的自动模拟电路设计,并具有深入的增强学习

Domain Knowledge-Based Automated Analog Circuit Design with Deep Reinforcement Learning

论文作者

Cao, Weidong, Benosman, Mouhacine, Zhang, Xuan, Ma, Rui

论文摘要

模拟电路的设计自动化是集成电路场中的长期挑战。本文提出了一种深厚的增强学习方法,可以在前阶段加快模拟电路的设计,目标是找到设备参数以满足所需的电路规格。我们的方法灵感来自经验丰富的人类设计师,他们依靠模拟电路设计的领域知识(例如电路拓扑和电路规格之间的耦合)来解决问题。与所有先前的方法不同,我们的方法最初通过基于图形的策略网络将这种关键领域知识纳入策略学习中,从而最好地对电路参数和设计目标之间的关系进行建模。示例性电路的实验结果表明,它具有现有表现最佳方法的1.5倍效率的人类水平设计精度(〜99%)。我们的方法还显示出更好的概括能力,可以在电路性能优化中看不见的规格和最佳性。此外,它适用于设计不同半导体技术的各种模拟电路,从而打破了使用常规半导体技术设计一种特定类型的模拟电路时先前的临时方法的局限性。

The design automation of analog circuits is a longstanding challenge in the integrated circuit field. This paper presents a deep reinforcement learning method to expedite the design of analog circuits at the pre-layout stage, where the goal is to find device parameters to fulfill desired circuit specifications. Our approach is inspired by experienced human designers who rely on domain knowledge of analog circuit design (e.g., circuit topology and couplings between circuit specifications) to tackle the problem. Unlike all prior methods, our method originally incorporates such key domain knowledge into policy learning with a graph-based policy network, thereby best modeling the relations between circuit parameters and design targets. Experimental results on exemplary circuits show it achieves human-level design accuracy (~99%) with 1.5x efficiency of existing best-performing methods. Our method also shows better generalization ability to unseen specifications and optimality in circuit performance optimization. Moreover, it applies to designing diverse analog circuits across different semiconductor technologies, breaking the limitations of prior ad-hoc methods in designing one particular type of analog circuits with conventional semiconductor technology.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源