论文标题
在$ 1 $ $ d二次klein-gordon方程中具有潜力和对称性
On $1$d quadratic Klein-Gordon equations with a potential and symmetries
论文作者
论文摘要
本文是前两位作者的先前作品Germain-Pusateri(2020)的延续。在某些假设下,我们专注于具有潜力的$ 1 $二维二次klein-gordon方程,这些假设不如Germain-Pusateri(2020年),但让我们可以在全球存在的证明中呈现一些简化,并衰减小解决方案。特别是,我们可以对基本的$ l^2 $加权类型规范进行更强大的控制,同时为某些参数提供一些较短且更少的技术证明。
This paper is a continuation of a previous work Germain-Pusateri (2020) by the first two authors. We focus on $1$ dimensional quadratic Klein-Gordon equations with a potential, under some assumptions that are less general than Germain-Pusateri (2020), but allow us to present some simplifications in the proof of global existence with decay for small solutions. In particular, we can propagate a stronger control on a basic $L^2$-weighted type norm while providing some shorter and less technical proofs for some of the arguments.