论文标题

与低资源特定任务自然语言生成的分解培训先验的变异自动编码器

Variational Autoencoder with Disentanglement Priors for Low-Resource Task-Specific Natural Language Generation

论文作者

Li, Zhuang, Qu, Lizhen, Xu, Qiongkai, Wu, Tongtong, Zhan, Tianyang, Haffari, Gholamreza

论文摘要

在本文中,我们提出了一个带有分离式先验的变异自动编码器,即Vae-Drior,对于特定于任务的自然语言生成,没有或少数特定于任务的标签示例。为了解决跨任务的组成概括,我们的模型通过引入潜在内容空间的有条件的先验和潜在标签空间的另一条条件性的先验来执行分离的表示形式学习。两种类型的先验都满足了一个名为$ε$ disentangled的新颖属性。我们从经验和理论上表明,即使没有特定的正规化,新的先生先验也可以解散表示形式。内容先验可以直接从从所见任务中学到的内容空间中直接采样各种内容表示,并将其与在低资源设置中生成语义上多样化文本的新任务的表示形式融合在一起。我们的广泛实验表明,根据i)在连续零/少数学习中的数据增强以及ii)ii)在几个弹片设置中的文本样式转移。

In this paper, we propose a variational autoencoder with disentanglement priors, VAE-DPRIOR, for task-specific natural language generation with none or a handful of task-specific labeled examples. In order to tackle compositional generalization across tasks, our model performs disentangled representation learning by introducing a conditional prior for the latent content space and another conditional prior for the latent label space. Both types of priors satisfy a novel property called $ε$-disentangled. We show both empirically and theoretically that the novel priors can disentangle representations even without specific regularizations as in the prior work. The content prior enables directly sampling diverse content representations from the content space learned from the seen tasks, and fuse them with the representations of novel tasks for generating semantically diverse texts in the low-resource settings. Our extensive experiments demonstrate the superior performance of our model over competitive baselines in terms of i) data augmentation in continuous zero/few-shot learning, and ii) text style transfer in the few-shot setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源