论文标题

解释对人工智能驱动症状检查器应用程序中外行信任的影响:实验研究

The Impact of Explanations on Layperson Trust in Artificial Intelligence-Driven Symptom Checker Apps: Experimental Study

论文作者

Woodcock, Claire, Mittelstadt, Brent, Busbridge, Dan, Blank, Grant

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

To achieve the promoted benefits of an AI symptom checker, laypeople must trust and subsequently follow its instructions. In AI, explanations are seen as a tool to communicate the rationale behind black-box decisions to encourage trust and adoption. However, the effectiveness of the types of explanations used in AI-driven symptom checkers has not yet been studied. Social theories suggest that why-explanations are better at communicating knowledge and cultivating trust among laypeople. This study ascertains whether explanations provided by a symptom checker affect explanatory trust among laypeople (N=750) and whether this trust is impacted by their existing knowledge of disease. Results suggest system builders developing explanations for symptom-checking apps should consider the recipient's knowledge of a disease and tailor explanations to each user's specific need. Effort should be placed on generating explanations that are personalized to each user of a symptom checker to fully discount the diseases that they may be aware of and to close their information gap.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源