论文标题

多项式神经网络的光谱偏差

The Spectral Bias of Polynomial Neural Networks

论文作者

Choraria, Moulik, Dadi, Leello Tadesse, Chrysos, Grigorios, Mairal, Julien, Cevher, Volkan

论文摘要

最近已证明多项式神经网络(PNN)在图像产生和面部识别方面特别有效,在图像生成和面部识别中,高频信息至关重要。先前的研究表明,神经网络证明了$ \ textIt {频谱偏见} $ to降低频率,这在训练过程中可以更快地学习低频组件。受这些研究的启发,我们对PNN的神经切线核(NTK)进行了光谱分析。我们发现$π$ -NET家族,即最近提出的PNN参数化,可以加快较高频率的学习。我们通过广泛的实验来验证理论偏见。我们希望我们的分析通过通过多项式合并乘法互动来为设计架构和学习框架提供新颖的见解。

Polynomial neural networks (PNNs) have been recently shown to be particularly effective at image generation and face recognition, where high-frequency information is critical. Previous studies have revealed that neural networks demonstrate a $\textit{spectral bias}$ towards low-frequency functions, which yields faster learning of low-frequency components during training. Inspired by such studies, we conduct a spectral analysis of the Neural Tangent Kernel (NTK) of PNNs. We find that the $Π$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the learning of the higher frequencies. We verify the theoretical bias through extensive experiments. We expect our analysis to provide novel insights into designing architectures and learning frameworks by incorporating multiplicative interactions via polynomials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源