论文标题
使用传输和反射复杂时间延迟以揭示散射矩阵杆和零:环图的示例
Use of Transmission and Reflection Complex Time Delays to Reveal Scattering Matrix Poles and Zeros: Example of the Ring Graph
论文作者
论文摘要
我们通过系统的测量和分析WIGNER,传输和反射复杂的时间延迟来确定简单量子图的散射矩阵的极点和零。我们检查了环形图,因为它同时显示了形状和Feshbach共振,后者是由实际频率轴上嵌入的本征态产生的。我们的分析根据复杂频率平面中散射矩阵的极点和零体的分布,对所谓的形状,feshbach,feshbach,电磁诱导的透明度和FANO共振提供了统一的理解。它还在各种实用设备中,包括光子微孔谐振器,微波环谐振器和介质环形导体设备,对尖锐的谐振散射特征和相关的大时延迟提供了第一原理的了解。我们的分析是反射时间差的首次使用,以及复杂时间延迟的首次全面使用,用于分析实验散射数据。
We identify the poles and zeros of the scattering matrix of a simple quantum graph by means of systematic measurement and analysis of Wigner, transmission, and reflection complex time delays. We examine the ring graph because it displays both shape and Feshbach resonances, the latter of which arises from an embedded eigenstate on the real frequency axis. Our analysis provides a unified understanding of the so-called shape, Feshbach, electromagnetically-induced transparency, and Fano resonances, on the basis of the distribution of poles and zeros of the scattering matrix in the complex frequency plane. It also provides a first-principles understanding of sharp resonant scattering features, and associated large time delay, in a variety of practical devices, including photonic microring resonators, microwave ring resonators, and mesoscopic ring-shaped conductor devices. Our analysis is the first use of reflection time difference, as well as the first comprehensive use of complex time delay, to analyze experimental scattering data.