论文标题

Rawlsgcn:迈向图形卷积网络上的Rawlsian差异原理

RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network

论文作者

Kang, Jian, Zhu, Yan, Xia, Yinglong, Luo, Jiebo, Tong, Hanghang

论文摘要

图形卷积网络(GCN)在许多现实世界应用中扮演关键角色。尽管GCN部署取得了成功,但GCN经常在节点学位方面表现出性能差异,从而导致低度节点的预测准确性较差。我们从Rawlsian差异原理的角度来提出减轻GCN中与学位相关的绩效差异的问题,该原则源自分布式正义理论。从数学上讲,我们旨在平衡低度节点和高度节点之间的效用,同时最大程度地减少特定于任务的损失。具体而言,我们通过分析GCN中的重量矩阵梯度来揭示与该程度相关的不公平性的根本原因。在重量矩阵的梯度的指导下,我们进一步提出了一种预处理方法Rawlsgcn图纸和一个内部处理方法RawlSGCN-Grad,该方法可在低度淋巴结中实现公平的预测准确性,而无需修改GCN结构或引入其他参数。关于现实世界图的广泛实验证明了我们提出的RawlSGCN方法在显着降低与度相关的偏差的同时保持可比的总体性能的有效性。

Graph Convolutional Network (GCN) plays pivotal roles in many real-world applications. Despite the successes of GCN deployment, GCN often exhibits performance disparity with respect to node degrees, resulting in worse predictive accuracy for low-degree nodes. We formulate the problem of mitigating the degree-related performance disparity in GCN from the perspective of the Rawlsian difference principle, which is originated from the theory of distributive justice. Mathematically, we aim to balance the utility between low-degree nodes and high-degree nodes while minimizing the task-specific loss. Specifically, we reveal the root cause of this degree-related unfairness by analyzing the gradients of weight matrices in GCN. Guided by the gradients of weight matrices, we further propose a pre-processing method RawlsGCN-Graph and an in-processing method RawlsGCN-Grad that achieves fair predictive accuracy in low-degree nodes without modification on the GCN architecture or introduction of additional parameters. Extensive experiments on real-world graphs demonstrate the effectiveness of our proposed RawlsGCN methods in significantly reducing degree-related bias while retaining comparable overall performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源