论文标题
恩格尔图的恩格尔图
The Engel graph of a finite group
论文作者
论文摘要
对于有限的组$ g,$我们调查了直接图$γ(g),其顶点是$ g $的非高度元素,而在$ [x,_ny] = 1 $时,有$ x \ mapsto y $,仅当$ n \ in。 $ g/z _ {\ infty}(g)$既不是frobenius也不简单。
For a finite group $G,$ we investigate the direct graph $Γ(G),$ whose vertices are the non-hypercentral elements of $G$ and where there is an edge $x\mapsto y$ if and only if $[x,_ny]=1$ for some $n \in \mathbb N.$ We prove that $Γ(G)$ is always weakly connected and is strongly connected if $G/Z_{\infty}(G)$ is neither Frobenius nor almost simple.