论文标题
超级 - 埃德丁顿流出及其对宇宙学量表的影响
Structure of the super-Eddington outflow and itsimpact on the cosmological scale
论文作者
论文摘要
它是黑洞(BH)天体物理学中最大的问题之一,如何精确评估BH对环境的反馈。为了研究高红移的超级质量黑洞(SMBH)种子的超级伊德丁顿流动的独特气体动力学,我们通过嵌套的仿真盒方法进行了轴对称二维辐射水动力模拟。在这里,我们将模拟框分为$(2-3 \ times 10^3)r _ {\ rm {sch}} $(带有$ r _ {\ rm sch} $是schwarzschild radius)和外部区域,在$(2 \ times 10^{3} {3} - 3} -3 \ times 10^6)$ _ {物理量,例如气体密度,速度和辐射能。我们通过以$ \ dot {m} _ {\ rm {inj}} = 10^3l _ {\ rm {edd}}/c^2 $的固定速率以$ \ dot {m} _ {\ rm {inj}} = 10^3l _ {\ rm l _ {eddd is um eddding的速度来开始计算。在最内部的区域生成了强大的流出,并从内部区域传播到外部区域。流出的特征是速度为0.02 $ c $(0.7 $ c $),密度为$ 10^{ - 17} $($ 10^{ - 19} $)g cm $^cm $^{ - 3} $,用于附近(面对面)方向。流出通过接受辐射压力而逐渐加速流出。最外面边界处的最终质量流出率为$ \ dot {m} _ {\ rm {out}}} \ sim 0.3 \ times \ dot {m} _ {\ rm {inj}}} $。通过将流出结构外推到更大的规模,我们发现$ r \ sim 0.1 $ PC的动量和能量通量为$ \ sim 10-100 l _ {\ rm {edd}}/c $和$ \ sim 0.1-10 l _ {\ rm {edd}} $。此外,我们发现影响是高度各向异性的,因为与边缘方向相比,对面向方向的影响更大。这些结果表明,BH反馈在星际介质上的工作效率比宇宙学模拟中所假设的更有效。
It is one of the biggest issues in black hole (BH) astrophysics how to precisely evaluate BH feedback to its environments. Aiming at studying the unique gas dynamics of super-Eddington flow around supermassive black hole (SMBH) seeds at high redshift, we carried out axisymmetric two dimensional radiation hydrodynamic simulations by a nested simulation-box method. Here we divide the simulation box into the inner zone at $(2 - 3 \times 10^3) r_{\rm{Sch}}$ (with $r_{\rm Sch}$ being the Schwarzschild radius) and the outer zone at $(2\times 10^{3} - 3\times 10^6) r_{\rm{Sch}}$, with smooth connection of the physical quantities, such as gas density, velocity, and radiation energy. We start the calculation by injecting mass through the outer boundary of the inner zone at a constant rate of $\dot{M}_{\rm{inj}}=10^3L_{\rm{Edd}}/c^2$, where $L_{\rm{Edd}}$ is the Eddington luminosity and $c$ is the speed of light. A powerful outflow is generated in the innermost region and it propagates from the inner zone to the outer zone. The outflows are characterized by a velocity of 0.02$c$ (0.7$c$) and density of $10^{-17}$ ($10^{-19}$) g cm$^{-3}$ for near the edge-on (face-on) direction. The outflow is gradually accelerated as it travels by accepting radiation-pressure force. The final mass outflow rate at the outermost boundary is $\dot{M}_{\rm{out}}\sim 0.3 \times \dot{M}_{\rm{inj}}$. By extrapolating the outflow structure to a further larger scale, we find that the momentum and energy fluxes at $r \sim 0.1$ pc are $\sim 10-100 L_{\rm{Edd}}/c $ and $\sim 0.1-10 L_{\rm{Edd}}$, respectively. Moreover, we find that the impacts are highly anisotropic in the sense that larger impacts are given towards the face-on direction than in the edge-on direction. These results indicate that the BH feedback will more efficiently work on the interstellar medium than that assumed in the cosmological simulations.