论文标题

CISCNET-单分支单元格实例分割和分类网络

ciscNet -- A Single-Branch Cell Instance Segmentation and Classification Network

论文作者

Böhland, Moritz, Neumann, Oliver, Schilling, Marcel P., Reischl, Markus, Mikut, Ralf, Löffler, Katharina, Scherr, Tim

论文摘要

自动细胞核分割和分类需要帮助病理学家决策。结肠核鉴定和计数挑战2022(CONIC CHANKION 2022)支持组织病理学图像的分割和分类方法的发展和可比性。在这项贡献中,我们描述了我们的圆锥挑战2022方法CISCNET对细分,分类和计数细胞核,并报告初步评估结果。我们的代码可在https://git.scc.kit.edu/ciscnet/ciscnet-conic-2022上找到。

Automated cell nucleus segmentation and classification are required to assist pathologists in their decision making. The Colon Nuclei Identification and Counting Challenge 2022 (CoNIC Challenge 2022) supports the development and comparability of segmentation and classification methods for histopathological images. In this contribution, we describe our CoNIC Challenge 2022 method ciscNet to segment, classify and count cell nuclei, and report preliminary evaluation results. Our code is available at https://git.scc.kit.edu/ciscnet/ciscnet-conic-2022.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源