论文标题

Stylegan的架构,方法和应用中的最先进

State-of-the-Art in the Architecture, Methods and Applications of StyleGAN

论文作者

Bermano, Amit H., Gal, Rinon, Alaluf, Yuval, Mokady, Ron, Nitzan, Yotam, Tov, Omer, Patashnik, Or, Cohen-Or, Daniel

论文摘要

生成的对抗网络(GAN)已将自己确立为图像合成的一种普遍方法。其中,StyleGan提供了一个引人入胜的案例研究,这是由于其出色的视觉质量和支持大量下游任务的能力。该最新报告涵盖了StyleGAN架构以及自构想以来的使用方式,同时还分析了其严重的局限性。它的目标是对希望能够掌握该领域的新移民以及经验丰富的读者使用,这些新移民可能会因为看到当前的研究趋势和现有工具而受益。 Stylegan最有趣的方面是其博学的潜在空间。尽管在没有监督的情况下被学到了,但表现出色,并且非常不知情。结合Stylegan的视觉质量,这些属性产生了无与伦比的编辑功能。但是,stylegan提供的控件本质上仅限于发电机的学习分布,只能应用于stylegan本身生成的图像。为了将StyleGan的潜在控制带入现实世界情景,GAN倒置和潜在空间嵌入的研究很快就越来越受欢迎。同时,这项研究帮助阐明了StyleGan的内部运作和局限性。通过这些调查,我们绘制了Stylegan令人印象深刻的故事,并讨论使Stylegan成为首选生成器的细节。我们进一步详细介绍了视觉先验风格的构造,并讨论了它们在下游歧视任务中的用途。展望未来,我们指出了Stylegan的局限性,并推测了当前趋势和有希望的未来研究方向,例如任务和针对特定的微调。

Generative Adversarial Networks (GANs) have established themselves as a prevalent approach to image synthesis. Of these, StyleGAN offers a fascinating case study, owing to its remarkable visual quality and an ability to support a large array of downstream tasks. This state-of-the-art report covers the StyleGAN architecture, and the ways it has been employed since its conception, while also analyzing its severe limitations. It aims to be of use for both newcomers, who wish to get a grasp of the field, and for more experienced readers that might benefit from seeing current research trends and existing tools laid out. Among StyleGAN's most interesting aspects is its learned latent space. Despite being learned with no supervision, it is surprisingly well-behaved and remarkably disentangled. Combined with StyleGAN's visual quality, these properties gave rise to unparalleled editing capabilities. However, the control offered by StyleGAN is inherently limited to the generator's learned distribution, and can only be applied to images generated by StyleGAN itself. Seeking to bring StyleGAN's latent control to real-world scenarios, the study of GAN inversion and latent space embedding has quickly gained in popularity. Meanwhile, this same study has helped shed light on the inner workings and limitations of StyleGAN. We map out StyleGAN's impressive story through these investigations, and discuss the details that have made StyleGAN the go-to generator. We further elaborate on the visual priors StyleGAN constructs, and discuss their use in downstream discriminative tasks. Looking forward, we point out StyleGAN's limitations and speculate on current trends and promising directions for future research, such as task and target specific fine-tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源