论文标题

丽莎:从语言学习可解释的技能抽象

LISA: Learning Interpretable Skill Abstractions from Language

论文作者

Garg, Divyansh, Vaidyanath, Skanda, Kim, Kuno, Song, Jiaming, Ermon, Stefano

论文摘要

在复杂,多任务环境中有效利用语言指令的学习政策是顺序决策中的重要问题。虽然可以直接在整个语言指导下进行条件,但这种方法可能会遭受泛化问题。在我们的工作中,我们建议\ emph {学习可解释的技能抽象(LISA)},这是一个层次模仿学习框架,可以从语言条件的演示中学习多样化,可解释的原始行为或技能,以更好地推广到看不见的指示。丽莎使用向量量化来学习与语言指令高度相关的离散技能代码和学习策略的行为。在导航和机器人操作环境中,丽莎在低数据制度中优于强大的非等级决策变压器基线,并且能够撰写学习的技能,以解决包含看不见的远距离指示的任务。我们的方法展示了一种更自然的方法,可以在顺序决策问题中调节语言,并通过学习技能实现可解释和可控制的行为。

Learning policies that effectively utilize language instructions in complex, multi-task environments is an important problem in sequential decision-making. While it is possible to condition on the entire language instruction directly, such an approach could suffer from generalization issues. In our work, we propose \emph{Learning Interpretable Skill Abstractions (LISA)}, a hierarchical imitation learning framework that can learn diverse, interpretable primitive behaviors or skills from language-conditioned demonstrations to better generalize to unseen instructions. LISA uses vector quantization to learn discrete skill codes that are highly correlated with language instructions and the behavior of the learned policy. In navigation and robotic manipulation environments, LISA outperforms a strong non-hierarchical Decision Transformer baseline in the low data regime and is able to compose learned skills to solve tasks containing unseen long-range instructions. Our method demonstrates a more natural way to condition on language in sequential decision-making problems and achieve interpretable and controllable behavior with the learned skills.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源