论文标题

一致性索引分解:对生存预测模型有更深入了解的衡量标准

The Concordance Index decomposition: A measure for a deeper understanding of survival prediction models

论文作者

Alabdallah, Abdallah, Ohlsson, Mattias, Pashami, Sepideh, Rögnvaldsson, Thorsteinn

论文摘要

一致性指数(C-Index)是用于评估预测模型性能的生存分析中的常用度量。在本文中,我们提出将C索引分解为两个数量的加权谐波平均值:一个用于对观察到的事件进行排名与其他观察到的事件,另一个用于对观察到的事件进行排名与审查案例的排名。这种分解可以对不同生存预测方法之间的相对优势和劣势进行更细粒度的分析。通过基准比较与经典模型和最新方法,以及本文提出的新的基于神经网络网络的方法(Surved),通过基准比较来证明这种分解的有用性。使用四个公开可用的数据集评估模型的性能,该数据集具有不同的审查水平。分析使用C-指数分解和合成审查,表明,深度学习模型比其他模型更有效地利用了观察到的事件。这使他们可以将稳定的C索引保持在不同的审查级别。与这种深度学习方法相反,当审查水平下降时,经典的机器学习模型由于无法改善对事件与其他事件的排名而降低。

The Concordance Index (C-index) is a commonly used metric in Survival Analysis for evaluating the performance of a prediction model. In this paper, we propose a decomposition of the C-index into a weighted harmonic mean of two quantities: one for ranking observed events versus other observed events, and the other for ranking observed events versus censored cases. This decomposition enables a finer-grained analysis of the relative strengths and weaknesses between different survival prediction methods. The usefulness of this decomposition is demonstrated through benchmark comparisons against classical models and state-of-the-art methods, together with the new variational generative neural-network-based method (SurVED) proposed in this paper. The performance of the models is assessed using four publicly available datasets with varying levels of censoring. Using the C-index decomposition and synthetic censoring, the analysis shows that deep learning models utilize the observed events more effectively than other models. This allows them to keep a stable C-index in different censoring levels. In contrast to such deep learning methods, classical machine learning models deteriorate when the censoring level decreases due to their inability to improve on ranking the events versus other events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源