论文标题
成长:用于记忆效率图卷积神经网络的划分稀疏密集的GEMM加速器
GROW: A Row-Stationary Sparse-Dense GEMM Accelerator for Memory-Efficient Graph Convolutional Neural Networks
论文作者
论文摘要
图形卷积神经网络(GCN)已成为各种应用程序域的关键技术,其中输入数据是相关的。 GCN的一个独特属性是,其两个主要执行阶段(聚合和组合)具有截然不同的数据流。因此,先前的GCN加速器通过将聚合和组合阶段作为一系列稀疏密集的矩阵乘法来解决这一研究空间。但是,先前的工作经常遭受效率低下的数据移动,桌子上留下了重要的性能。我们展示了GRAW是一种基于Gustavson的算法的GCN加速器,以构建基于行的稀疏浓密GEMM加速器。 GRAW共同设计的软件/硬件可以在GCN上达到当地和并行性的平衡,从而与最先进的GCN加速器实现了显着的能源效率提高。
Graph convolutional neural networks (GCNs) have emerged as a key technology in various application domains where the input data is relational. A unique property of GCNs is that its two primary execution stages, aggregation and combination, exhibit drastically different dataflows. Consequently, prior GCN accelerators tackle this research space by casting the aggregation and combination stages as a series of sparse-dense matrix multiplication. However, prior work frequently suffers from inefficient data movements, leaving significant performance left on the table. We present GROW, a GCN accelerator based on Gustavson's algorithm to architect a row-wise product based sparse-dense GEMM accelerator. GROW co-designs the software/hardware that strikes a balance in locality and parallelism for GCNs, achieving significant energy-efficiency improvements vs. state-of-the-art GCN accelerators.