论文标题

结肠核标识和计数挑战的标准化管道

A Standardized Pipeline for Colon Nuclei Identification and Counting Challenge

论文作者

Cheng, Jijun, Pan, Xipeng, Hou, Feihu, Zhao, Bingchao, Lin, Jiatai, Liu, Zhenbing, Liu, Zaiyi, Han, Chu

论文摘要

核分割和分类是计算病理学的重要步骤。沃里克大学(Warwick University)的TIA实验室组织了一次核分割和分类挑战(CONIC),用于结直肠癌中H&E染色的组织病理学图像,其中有两个高度相关的任务,Nuclei分割和分类任务以及细胞组成任务。在这项挑战中,我们必须解决一些障碍,1)有限的训练样本,2)颜色变化,3)注释不平衡,4)类中类似的形态学外观。为了应对这些挑战,我们提出了一条标准化的核分割和分类管道,通过整合几个可插入的组件。首先,我们构建了一个基于GAN的模型,以自动生成伪图像以进行数据增强。然后,我们训练了一个自制的染色归一化模型,以解决颜色变化问题。接下来,我们构建了一个基线模型悬停网络,具有成本敏感的损失,以鼓励模型对少数群体的关注。根据排行榜的结果,我们提议的管道在初步测试阶段中实现了0.40665 MPQ+(排名第49)和0.62199 R2(排名第10)。

Nuclear segmentation and classification is an essential step for computational pathology. TIA lab from Warwick University organized a nuclear segmentation and classification challenge (CoNIC) for H&E stained histopathology images in colorectal cancer with two highly correlated tasks, nuclei segmentation and classification task and cellular composition task. There are a few obstacles we have to address in this challenge, 1) limited training samples, 2) color variation, 3) imbalanced annotations, 4) similar morphological appearance among classes. To deal with these challenges, we proposed a standardized pipeline for nuclear segmentation and classification by integrating several pluggable components. First, we built a GAN-based model to automatically generate pseudo images for data augmentation. Then we trained a self-supervised stain normalization model to solve the color variation problem. Next we constructed a baseline model HoVer-Net with cost-sensitive loss to encourage the model pay more attention on the minority classes. According to the results of the leaderboard, our proposed pipeline achieves 0.40665 mPQ+ (Rank 49th) and 0.62199 r2 (Rank 10th) in the preliminary test phase.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源