论文标题
在弱*得出的集合的子空间上
On subspaces whose weak* derived sets are proper and norm dense
论文作者
论文摘要
我们研究了迭代弱*派生集的长链,即有界网的所有弱*限制的集合,其倒数第二个弱*派生的集合的额外属性是二元的适当态度的态度密集的子空间。我们扩展了Ostrovskii的结果并显示出来,在任何非Quasi-Reflexive Banach空间的双重二元空间中,该空间包含具有可分离二元的无限尺寸子空间,我们可以找到任何可计数后继序的序列αAA子空间,其弱*衍生的顺序α均适当且符号α适当且态度密度。
We study long chains of iterated weak* derived sets, that is sets of all weak* limits of bounded nets, of subspaces with the additional property that the penultimate weak* derived set is a proper norm dense subspace of the dual. We extend the result of Ostrovskii and show, that in the dual of any non-quasi-reflexive Banach space containing an infinite-dimensional subspace with separable dual, we can find for any countable successor ordinal α a subspace, whose weak* derived set of order α is proper and norm dense.