论文标题
平面地面车辆的有效全球无视视觉探光仪
Efficient Globally-Optimal Correspondence-Less Visual Odometry for Planar Ground Vehicles
论文作者
论文摘要
平面地面车辆的运动通常是非全面的,因此可以通过2 DOF Ackermann转向模型进行建模。我们分析了使用向下朝下的摄像机估算这种运动的可行性,该摄像头会相对于接地平面发挥额头平行的运动。这将运动估计变成了一个简单的图像注册问题,在该问题中,我们只需要确定2参数平面同型。但是,这种设置引起的一个困难是,地面平面特征是模糊不清的,因此很难在连续的视图之间匹配。我们通过将第一个全球最佳的,无对应的解决方案引入基于平面的Ackermann运动估计来遇到这一困难。该解决方案依赖于分支结合的优化技术。通过低维参数化,紧密界限的推导以及有效的实现,我们证明了该技术最终如何符合准确的实时运动估计。我们证明了它的全球最优性能,并分析了假设局部旋转中心的影响。我们对实际数据的结果最终证明了比更传统的基于对应关系的假设和测试方案具有显着优势。
The motion of planar ground vehicles is often non-holonomic, and as a result may be modelled by the 2 DoF Ackermann steering model. We analyse the feasibility of estimating such motion with a downward facing camera that exerts fronto-parallel motion with respect to the ground plane. This turns the motion estimation into a simple image registration problem in which we only have to identify a 2-parameter planar homography. However, one difficulty that arises from this setup is that ground-plane features are indistinctive and thus hard to match between successive views. We encountered this difficulty by introducing the first globally-optimal, correspondence-less solution to plane-based Ackermann motion estimation. The solution relies on the branch-and-bound optimisation technique. Through the low-dimensional parametrisation, a derivation of tight bounds, and an efficient implementation, we demonstrate how this technique is eventually amenable to accurate real-time motion estimation. We prove its property of global optimality and analyse the impact of assuming a locally constant centre of rotation. Our results on real data finally demonstrate a significant advantage over the more traditional, correspondence-based hypothesise-and-test schemes.