论文标题
基于评分功能的灵敏度度量
Sensitivity Measures Based on Scoring Functions
论文作者
论文摘要
我们提出了一个整体框架,用于构建响应变量的任何可有效的功能$ t $的灵敏度度量。灵敏度度量(称为基于得分的灵敏度)是通过(严格)$ t $一致的评分功能来构建的。理想情况下,这些基于得分的敏感性量化了可用信息(例如,从解释变量)量化预测精度的相对提高。我们建立了这些敏感性的直观和理想的特性,并讨论了评分功能的优势选择,从而导致尺度不变敏感性。 由于可靠的功能通常具有丰富的(严格)一致的评分函数类别,因此我们演示了墨菲图如何提供所有基于得分的灵敏度度量的图片。我们讨论了基于得分的敏感性对平均功能的敏感性(其中SOBOL指数是一种特殊情况)以及风险功能(如危险价值的风险),以及配对的危险价值和预期的短缺。使用许多示例(包括Ishigami-Homma测试功能)来说明灵敏度度量。在一项模拟研究中,使用神经网络对非线性保险投资组合的基于得分的敏感性进行估计。
We propose a holistic framework for constructing sensitivity measures for any elicitable functional $T$ of a response variable. The sensitivity measures, termed score-based sensitivities, are constructed via scoring functions that are (strictly) consistent for $T$. These score-based sensitivities quantify the relative improvement in predictive accuracy when available information, e.g., from explanatory variables, is used ideally. We establish intuitive and desirable properties of these sensitivities and discuss advantageous choices of scoring functions leading to scale-invariant sensitivities. Since elicitable functionals typically possess rich classes of (strictly) consistent scoring functions, we demonstrate how Murphy diagrams can provide a picture of all score-based sensitivity measures. We discuss the family of score-based sensitivities for the mean functional (of which the Sobol indices are a special case) and risk functionals such as Value-at-Risk, and the pair Value-at-Risk and Expected Shortfall. The sensitivity measures are illustrated using numerous examples, including the Ishigami--Homma test function. In a simulation study, estimation of score-based sensitivities for a non-linear insurance portfolio is performed using neural nets.