论文标题

两类具有Boomerang均匀性的功率映射2

Two Classes of Power Mappings with Boomerang Uniformity 2

论文作者

Li, Zhen, Yan, Haode

论文摘要

让$ Q $成为奇怪的素数。令$ f_1(x)= x^{d_1} $和$ f_2(x)= x^{d_2} $ be power mappings $ \ mathrm {gf}(q^2)$,其中$ d_1 = q-1 = q-1 $和$ d_2 = d_1+\ frac {q^2-1} {2} = \ frac {(q-1)(q+3)} {2} $。在本文中,我们通过其不同属性研究了$ f_1 $和$ f_2 $的回旋镖均匀性。结果表明,$ f_i $($ i = 1,2 $)的回旋镖均匀性为2,在$ q $上有一些条件。

Let $q$ be an odd prime power. Let $F_1(x)=x^{d_1}$ and $F_2(x)=x^{d_2}$ be power mappings over $\mathrm{GF}(q^2)$, where $d_1=q-1$ and $d_2=d_1+\frac{q^2-1}{2}=\frac{(q-1)(q+3)}{2}$. In this paper, we study the the boomerang uniformity of $F_1$ and $F_2$ via their differential properties. It is shown that, the boomerang uniformity of $F_i$ ($i=1,2$) is 2 with some conditions on $q$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源