论文标题

精神状态分类使用多盖功能

Mental State Classification Using Multi-graph Features

论文作者

Chen, Guodong, Helm, Hayden S., Lytvynets, Kate, Yang, Weiwei, Priebe, Carey E.

论文摘要

我们考虑从被动,多渠道脑电图(EEG)设备提取特征的问题,用于下游推理任务与高级精神状态(例如压力和认知负荷)相关。我们提出的方法利用了最近开发的多画工具,并将其应用于多个传感器之间统计依赖性结构(例如相关)所隐含的图表的时间序列。在三个分类实验的背景下,我们将提出功能与传统功率功能的有效性与传统功能的功能进行了比较,并发现这两个功能集提供了互补的预测信息。最后,我们表明使用所提出的特征时,特定的通道和对分类对分类的重要性是神经科学有效的。

We consider the problem of extracting features from passive, multi-channel electroencephalogram (EEG) devices for downstream inference tasks related to high-level mental states such as stress and cognitive load. Our proposed method leverages recently developed multi-graph tools and applies them to the time series of graphs implied by the statistical dependence structure (e.g., correlation) amongst the multiple sensors. We compare the effectiveness of the proposed features to traditional band power-based features in the context of three classification experiments and find that the two feature sets offer complementary predictive information. We conclude by showing that the importance of particular channels and pairs of channels for classification when using the proposed features is neuroscientifically valid.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源