论文标题
使用Encoder-Decoder复发神经网络的WMTI-WATSON模型的WMTI-WATSON模型的参数估计
Parameter estimation for WMTI-Watson model of white matter using encoder-decoder recurrent neural network
论文作者
论文摘要
扩散MRI信号的生物物理模型提供了特定微结构组织特性的估计。尽管非线性优化,例如非线性最小二乘(NLL)是模型估计最广泛的方法,但它遭受了局部最小值和高计算成本的损害。深度学习方法正在稳步替代NL拟合,但要限制每个采集方案和噪声水平都需要重新训练该模型。提出了白质道的完整性(WMTI) - WATSON模型是在白质中扩散标准模型的实现,该模型估算了从扩散和峰度张量(DKI)中估算模型参数。在这里,我们提出了一种基于编码器复发性神经网络(RNN)的深度学习方法,以提高鲁棒性并加速WMTI-WATSON的参数估计。我们使用一种嵌入方法来使模型对训练数据和实验数据之间的分布的潜在差异不敏感。因此,该基于RNN的求解器具有高效的计算效率,并且可以更容易地转换为其他数据集,而不论采集协议和基本参数分布,只要DKI从数据中预先计算。在这项研究中,我们评估了NLL的性能,基于RNN的方法以及多层感知器(MLP)在大鼠和人脑的合成和体内数据集上的性能。我们表明,提出的基于RNN的拟合方法具有高度减少的计算时间(从小时到秒),具有相似的精度和精度但提高的鲁棒性,并且比MLP高于新数据集。
Biophysical modelling of the diffusion MRI signal provides estimates of specific microstructural tissue properties. Although nonlinear optimization such as non-linear least squares (NLLS) is the most widespread method for model estimation, it suffers from local minima and high computational cost. Deep Learning approaches are steadily replacing NL fitting, but come with the limitation that the model needs to be retrained for each acquisition protocol and noise level. The White Matter Tract Integrity (WMTI)-Watson model was proposed as an implementation of the Standard Model of diffusion in white matter that estimates model parameters from the diffusion and kurtosis tensors (DKI). Here we proposed a deep learning approach based on the encoder-decoder recurrent neural network (RNN) to increase the robustness and accelerate the parameter estimation of WMTI-Watson. We use an embedding approach to render the model insensitive to potential differences in distributions between training data and experimental data. This RNN-based solver thus has the advantage of being highly efficient in computation and more readily translatable to other datasets, irrespective of acquisition protocol and underlying parameter distributions as long as DKI was pre-computed from the data. In this study, we evaluated the performance of NLLS, the RNN-based method and a multilayer perceptron (MLP) on synthetic and in vivo datasets of rat and human brain. We showed that the proposed RNN-based fitting approach had the advantage of highly reduced computation time over NLLS (from hours to seconds), with similar accuracy and precision but improved robustness, and superior translatability to new datasets over MLP.