论文标题

通过合并已知物理学来对复发神经网络的路径采样

Path sampling of recurrent neural networks by incorporating known physics

论文作者

Tsai, Sun-Ting, Fields, Eric, Xu, Yijia, Kuo, En-Jui, Tiwary, Pratyush

论文摘要

复发性的神经网络已经在模拟各种域中的动态系统(例如天气预测,文本预测等)中广泛使用。通常,人们希望通过对系统的先验知识或直觉来补充实验观察到的动态。尽管这些网络的反复性质使他们能够在训练中使用的时间序列中任意建模记忆,但它使通过通用约束强加先验知识或直觉变得更加困难。在这项工作中,我们根据最大能力的原理提出了一种路径采样方法,该方法使我们能够将通用的热力学或动力学约束包括在复发的神经网络中。我们在此处显示了在补充从不同应用域收集的时间序列的背景下,在此处显示了广泛使用的复发性神经网络类型。其中包括开放量子系统的蛋白质和蒙特卡洛模拟的经典分子动力学,将光子连续丢失到环境并显示出Rabi振荡。我们的方法可以轻松地推广到其他生成人工智能模型,并在物理和社会科学领域的不同领域中进行通用时间序列,在这些领域中,人们希望以基于直觉或基于理论的校正来补充有限的数据。

Recurrent neural networks have seen widespread use in modeling dynamical systems in varied domains such as weather prediction, text prediction and several others. Often one wishes to supplement the experimentally observed dynamics with prior knowledge or intuition about the system. While the recurrent nature of these networks allows them to model arbitrarily long memories in the time series used in training, it makes it harder to impose prior knowledge or intuition through generic constraints. In this work, we present a path sampling approach based on principle of Maximum Caliber that allows us to include generic thermodynamic or kinetic constraints into recurrent neural networks. We show the method here for a widely used type of recurrent neural network known as long short-term memory network in the context of supplementing time series collected from different application domains. These include classical Molecular Dynamics of a protein and Monte Carlo simulations of an open quantum system continuously losing photons to the environment and displaying Rabi oscillations. Our method can be easily generalized to other generative artificial intelligence models and to generic time series in different areas of physical and social sciences, where one wishes to supplement limited data with intuition or theory based corrections.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源