论文标题
关于vojta和campana在功能领域的猜想中,具有明确的杰出集
On the conjectures of Vojta and Campana over function fields with explicit exceptional sets
论文作者
论文摘要
在功能字段的背景下,我们证明了VOJTA对表面的猜想的新案例,截断等于一个,并提供了对特殊集合的有效明确描述。我们还证明了对Campana对曲线复杂功能场的猜想的一般和明确的结果。我们的方法依赖于本地研究$ω$ - 综合品种。
We prove new cases of Vojta's conjectures for surfaces in the context of function fields, with truncation equal to one and providing an effective explicit description of the exceptional set. We also prove a general and explicit result towards Campana's conjecture over complex function fields of curves. Our methods rely on a local study of $ω$-integral varieties.