论文标题

在3D PET图像中的多任务多尺度学习以进行结果预测

Multi-Task Multi-Scale Learning For Outcome Prediction in 3D PET Images

论文作者

Amyar, Amine, Modzelewski, Romain, Vera, Pierre, Morard, Vincent, Ruan, Su

论文摘要

背景和目标:预测患者对肿瘤学治疗和生存的反应是迈向精确医学的重要方法。为此,提出了放射线学作为研究领域,其中使用图像而不是侵入性方法。放射组分析的第一步是病变的分割。但是,这项任务很耗时,可以是医师主观的。基于监督深度学习的自动化工具已取得了长足的进步来协助医生。但是,它们是饥饿的数据,注释的数据仍然是医学领域的主要问题,在医学领域,只有一小部分带注释的图像可用。 方法:在这项工作中,我们提出了一个多任务学习框架,以预测患者的生存和反应。我们表明,编码器可以利用多个任务来提取有意义的强大功能,以改善放射线的性能。我们还表明,辅助任务是归纳偏差,以便该模型可以更好地概括。 结果:对我们的模型进行了测试和验证,以用于肺和食管癌的治疗反应和生存,而ROC曲线下的区域分别为77%和71%,表现优于单个任务学习方法。 结论:我们表明,通过使用多任务学习方法,我们可以通过提取丰富的肿瘤内和周围区域的信息来提高放射线分析的性能。

Background and Objectives: Predicting patient response to treatment and survival in oncology is a prominent way towards precision medicine. To that end, radiomics was proposed as a field of study where images are used instead of invasive methods. The first step in radiomic analysis is the segmentation of the lesion. However, this task is time consuming and can be physician subjective. Automated tools based on supervised deep learning have made great progress to assist physicians. However, they are data hungry, and annotated data remains a major issue in the medical field where only a small subset of annotated images is available. Methods: In this work, we propose a multi-task learning framework to predict patient's survival and response. We show that the encoder can leverage multiple tasks to extract meaningful and powerful features that improve radiomics performance. We show also that subsidiary tasks serve as an inductive bias so that the model can better generalize. Results: Our model was tested and validated for treatment response and survival in lung and esophageal cancers, with an area under the ROC curve of 77% and 71% respectively, outperforming single task learning methods. Conclusions: We show that, by using a multi-task learning approach, we can boost the performance of radiomic analysis by extracting rich information of intratumoral and peritumoral regions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源