论文标题

可概括的人通过自我监管的批处理标准测试时间适应来重新识别

Generalizable Person Re-Identification via Self-Supervised Batch Norm Test-Time Adaption

论文作者

Han, Ke, Si, Chenyang, Huang, Yan, Wang, Liang, Tan, Tieniu

论文摘要

在本文中,我们调查了人重新识别的概括问题(RE-ID),其主要挑战是对看不见的领域的分布转移。作为正规化分布的重要工具,批准归一化(BN)已被广泛用于现有方法。但是,他们忽略了BN严重偏向训练领域,如果直接概括而没有更新,则不可避免地会遭受性能下降。为了解决此问题,我们提出了批处理标准测试时间适应(BNTA),这是一个新颖的重新ID框架,该框架应用了自我监督的策略来适应BN参数。具体而言,BNTA在推断之前迅速探讨了未标记的目标数据中的域感知信息,因此可以调节BN归一化的特征分布以适应目标域。这是通过两个设计的自制辅助任务(即零件定位和最接近的邻居匹配)来完成的,这些任务分别帮助模型挖掘了有关身体部位的结构和身份的域知识信息。为了证明我们方法的有效性,我们对三个重新ID数据集进行了广泛的实验,并确认了最先进方法的卓越性能。

In this paper, we investigate the generalization problem of person re-identification (re-id), whose major challenge is the distribution shift on an unseen domain. As an important tool of regularizing the distribution, batch normalization (BN) has been widely used in existing methods. However, they neglect that BN is severely biased to the training domain and inevitably suffers the performance drop if directly generalized without being updated. To tackle this issue, we propose Batch Norm Test-time Adaption (BNTA), a novel re-id framework that applies the self-supervised strategy to update BN parameters adaptively. Specifically, BNTA quickly explores the domain-aware information within unlabeled target data before inference, and accordingly modulates the feature distribution normalized by BN to adapt to the target domain. This is accomplished by two designed self-supervised auxiliary tasks, namely part positioning and part nearest neighbor matching, which help the model mine the domain-aware information with respect to the structure and identity of body parts, respectively. To demonstrate the effectiveness of our method, we conduct extensive experiments on three re-id datasets and confirm the superior performance to the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源