论文标题

从图像到暗物质:数百个强力镜头的子结构的端到端推断

From Images to Dark Matter: End-To-End Inference of Substructure From Hundreds of Strong Gravitational Lenses

论文作者

Wagner-Carena, Sebastian, Aalbers, Jelle, Birrer, Simon, Nadler, Ethan O., Darragh-Ford, Elise, Marshall, Philip J., Wechsler, Risa H.

论文摘要

限制宇宙中小规模结构的分布使我们能够探测冷暗物质范式的替代方案。强烈的引力镜头为小暗物质光环($ <10^{10} m_ \ odot $)提供了独特的窗口,因为即使它们不容纳发光星系,这些光晕也会散发出引力镜头信号。我们创建了具有逼真的低质量光环,哈勃太空望远镜(HST)观察效应和HST Cosmos Field的Galaxy Light的大型镜头图像的大型数据集。使用基于仿真的推理管道,我们训练Subhalo质量函数(SHMF)的神经后估计量,并对使用单独的一组星系源产生的镜头种群放置约束。我们发现,通过将网络与分层推理框架相结合,我们既可以可靠地推断出各种配置的SHMF,并有效地将SHMF提高到具有数百个镜头的种群。通过对大型且复杂的模拟数据集进行精确的推断,我们的方法为从下一代宽视野光学成像调查中提取暗物质约束的基础是基础。

Constraining the distribution of small-scale structure in our universe allows us to probe alternatives to the cold dark matter paradigm. Strong gravitational lensing offers a unique window into small dark matter halos ($<10^{10} M_\odot$) because these halos impart a gravitational lensing signal even if they do not host luminous galaxies. We create large datasets of strong lensing images with realistic low-mass halos, Hubble Space Telescope (HST) observational effects, and galaxy light from HST's COSMOS field. Using a simulation-based inference pipeline, we train a neural posterior estimator of the subhalo mass function (SHMF) and place constraints on populations of lenses generated using a separate set of galaxy sources. We find that by combining our network with a hierarchical inference framework, we can both reliably infer the SHMF across a variety of configurations and scale efficiently to populations with hundreds of lenses. By conducting precise inference on large and complex simulated datasets, our method lays a foundation for extracting dark matter constraints from the next generation of wide-field optical imaging surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源