论文标题

基于3D骨架的人类运动预测与歧管感知gan

3D Skeleton-based Human Motion Prediction with Manifold-Aware GAN

论文作者

Chopin, Baptiste, Otberdout, Naima, Daoudi, Mohamed, Bartolo, Angela

论文摘要

在这项工作中,我们为基于3D骨架的人类运动预测提出了一种新颖的解决方案。该任务的目的是根据先前的骨骼姿势序列预测未来的人类姿势。这涉及解决最近文献中仍然存在的两个主要挑战。 (1)预测运动的不连续性导致不切实际的动作和(2)长期范围内由于跨时间误差积累而导致的性能恶化。我们通过使用3D人类骨骼运动的紧凑型歧管值表示来解决这些问题。具体而言,我们将3D姿势的时间演变建模为轨迹,这使我们能够将人类运动映射到球体歧管上的单个点。使用这种紧凑的表示可以避免误差积累,并为长期预测提供了可靠的表示,同时确保整个运动的平稳性和相干性。为了学习这些非欧国人的表示,我们构建了一种多种感知的瓦斯汀生成对抗模型,该模型通过不同的损失来捕获人类运动的时间和空间依赖性。已经在CMU MOCAP和人类36M数据集上进行了实验,并在短期和长期视野中证明了我们的方法优于最先进的方法。定性结果突出了生成的运动的平滑度。

In this work we propose a novel solution for 3D skeleton-based human motion prediction. The objective of this task consists in forecasting future human poses based on a prior skeleton pose sequence. This involves solving two main challenges still present in recent literature; (1) discontinuity of the predicted motion which results in unrealistic motions and (2) performance deterioration in long-term horizons resulting from error accumulation across time. We tackle these issues by using a compact manifold-valued representation of 3D human skeleton motion. Specifically, we model the temporal evolution of the 3D poses as trajectory, what allows us to map human motions to single points on a sphere manifold. Using such a compact representation avoids error accumulation and provides robust representation for long-term prediction while ensuring the smoothness and the coherence of the whole motion. To learn these non-Euclidean representations, we build a manifold-aware Wasserstein generative adversarial model that captures the temporal and spatial dependencies of human motion through different losses. Experiments have been conducted on CMU MoCap and Human 3.6M datasets and demonstrate the superiority of our approach over the state-of-the-art both in short and long term horizons. The smoothness of the generated motion is highlighted in the qualitative results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源